材料人网线上讲座

Università della Svizzera italiana

张越宇 ETH Zürich / USI Lugano

•逆向材料设计软件 包介绍

背景: 什么是逆向材料设计

随着超级计算机以及第一性原理计算方法的发展,如果一种物质的结构明确了,那么我们可以通过计算的手段预言它的一系列性质。但是,这一过程的<mark>逆向过程,根据性质预言一种物质的组成结构</mark>,仍然是一种巨大的挑战。

逆向材料设计思想在计算上的实现

 $\alpha \Psi(z) + \beta \Psi(-z)$

VS

 $\alpha \Psi(z) = \beta \Psi(-z)$

Barrier

b-Valley

b-CBM

Si well

Substrate

0

Barrier

Zunger组首先提出了采用遗传算法对Si/Ge量子阱进行逆向材料设计,从而构建谷电子劈裂的体系。

Barrier

b-Valley b-CBM

L. Zhang, J.-W. Luo, A. Saraiva, B. Koiller, A. Zunger, Nat Commun, 4 (2013)2396.

Two-fold

Z-vallev

Six-fold

∆-valle

Energy level

GLOBAL TEMPERATURE: 1884 to 2014 Data source: NASA/GISS Credit: NASA Scientific Visualization Studio

近一个世纪以来,全球温度急剧变暖,这与逐年上升的CO₂排放密不可分。 至2016年大气中CO2浓度已达405 ppm,远超350 ppm的安全上限。

背景: 能源危机

化石能源的使用是CO2过度排放的重要原因

理想替代:太阳能、氢能

背景:太阳能材料的研发

长期以来<mark>新材料设计方法</mark>的缺乏使得我们难以系统地预言新型太阳能材料,预言 能力的缺乏使得我们缺少对材料的合理设计,并最终影响到<mark>太阳能真正大规模的</mark> 转换与利用。

通过开发多目标全局优化算法的程序 IM²0DE,从而实现新型功能材料的设计

通过我们自己开发的方法,预言 新型太阳能吸收材料 指导实验组,设计新型太阳能材 料的组分和形貌

Inverse Design of Materials by Multi-Objective Differential Evolution 基于多目标差分演化算法进行逆向材料设计

逆向材料设计的三大主要步骤

对材料的势能面进行重点采样,寻找 具有特定性质的稳态或亚稳态材料

Zhang, Y.-Y.; Gao, W.; Chen, S.; Xiang, H.; Gong, X.-G. Comput. Mater. Sci. 2015, 98, 51.

IM²0DE程序包的算法流程图

Multi-objective Differential Evolution Process

Differential Evolution Process

与传统的单目标差分演化算法相比,多目标的算法主要的改进在于<mark>排序</mark> 和<mark>变异</mark>操作。

1算法

多目标差分算法的排序操作

优于:当解A得所有目标函数值都要好于B时,我们称A优于B Pareto最优解:当没有其他解"优于" A时,我们称A在Pareto最优解集中

多目标差分算法的变异操作

对于一个不在Pareto最优解集中的解,其差分矢量由<mark>学习</mark>项和微扰项构成

多目标差分算法的变异操作

对于一个已经在Pareto最优解集中的解,其差分矢量仅由<mark>微扰项</mark>构成

2功能

IM²0DE软件包的功能

♣ 程序采用模块化的结构,便于维护和作进一步的 开发

♣ 在产生初始的块体结构时采用空间群优化,有效

提高采样效率

♣ 采用种群并行的策略,可以进行上千核并行的高

通量材料筛选,提高效率

寻找具有特定带隙的材料

 design material with a target direct band gap E_g

min z_1 = total energy min z_2 = $|E_g - direct gap| + |direct gap - indirect gap|$

10

System	E _g (eV)	Average generation
α-Al ₂ O ₃	6.4	2
Diamond (Carbon)	4.1	3
Graphite (Carbon)	0.0	3

在种群数30的情况下,IM²0DE能在2−3代内找到具有特定带隙的碳同素异形 体和AI₂0₃的晶体结构

寻找超硬材料

- Tested system: C₃N₄
- objective functions:

min
$$z_1$$
 = total energy
min z_2 = - B = $-\frac{N_c}{4}\frac{0.624 - 0.070I}{d^{3.5}}$

	Total Energy / atom (eV		
	/ atom)	B(empirical equ)(GPa)	B(ab initio)(GPa)
Defect zinc-blende	0.0	440.557	414.718
cubic	-0.022	454.546	462.48
1	-0.164	448.134	30.859
2	-0.055	463.917	140.35

IM²0DE能够重复出经典的cubic和defect zinc-blende相的晶体结构

预言具有合适带隙的二氧化钛材料

Titanium Oxide (TiO₂):

great potential in PEC water splitting

✓ low cost, nontoxic ...

✓ strong catalytic activity, high chemical stability

Large intrinsic band, absorbs only UV

A dopant-free TiO₂ phase with a suitable band gap is highly desirable.

预言具有合适带隙的二氧化钛材料

IM²0DE能够设计出有着更强可见光吸收的TiO₂相

HZ Chen, YY Zhang, X Gong, H Xiang, J. Phys. Chem. C, 2014, 118 (5)

4应用案例: 纯碳材料的设计

Carbon: a Versatile Element

Hybrid 4应用案例: 纯碳材料的设计opes

通过IM²ODE软件包的搜索,我们成功地预言了5种有混合*sp²-sp³*杂化的 碳同素异形体

Zhang, Y.-Y.; Chen, S.; Xiang, H.; Gong, X.-G. Carbon, 2016, 109, 246-252

High ef4应用案例: 纯碳材料的设计

电子结构性质

Optical dipole transition between the π and π^* states is allowed

4应用案例: 纯碳材料的设计

光学性质

C10-C和C24-C在3 µm厚时,预测的转化效率可以高达33.5%和32.9%

4应用案例: 多样的体系

体系1: 块体材料测试案例

System: TiO2(rutile) Ti: 16, O: 32 Optimized by GULP Structures generated according to space group

IM²ODE

1000 structure generated 50 rutile Hit rate: 5%

CALYPSO

3250 structure generated 203 rutile Hit rate: 6.2%

在初始结构采用空间群优化的情况下,IM²0DE的百次命中率与CALYPSO相仿

Wang et al, Computer Physics Communications, Volume 183, Issue 10, October 2012

The lowest energy str4应用案例 systems

体系2: 二维材料测试案例

Yang, J.-H.; Zhang, Y.-Y; Yin, W.-J.; Gong, X.-G. Yakobson, B. I.; Wei. S.-H. Nano Lett, 2016, 16 (2)

Formation energy diagram of Si_xS_{1-x}

- [1] Zhu, Z.; Guan, J.; Liu D.; Tománek, D. ACS Nano 2015, 9, 8284–8290
- SiS2 structures are all 3D, obtained from open data base.
- Formation energy is referenced to 3D Si bulk and S₈ molecule.

Band structures and DOS

Optical properties

Both Pma2-SiS and Silicene Sulfide have direct bandgaps which can allow optical transitions at band edges and have values close to the optimal requirement for solar cell applications.

High carrier mobility in SiS in comparison with phosphorene

- Mobility $\mu = \frac{\sigma}{e_{*n}}$, σ is conductivity, e is elemental charge, and n is carrier density.
- Both σ and n are functions of electron potentials or Fermi levels, so is μ .
- The VBMs of each materials are set as zero Fermi energy.
- Our SiS systems have high carrier mobility and are suitable for FETs.

Good defect properties of SiS: no gap states, air stablility

- S vacancy has no deep gap states;
- O-related defects have no deep gap states.

体系3: 搜索表面测试案例

System: TiO₂ (anatase[101])

Substrate: Ti: 12; O: 24

Surface: Ti: 4, O: 8

4 Ti atom and 8 O atoms for global optimization

Perfect surface could be found in an average of 3 generation

IM²0DE能够在种群数是30的情况下,平均3代把完整的表面重复出来

体系4: 搜索复杂缺陷测试案例

System: Defect of TiO₂

(anatase)

Ti: 16; O: 32

1 Ti atom and 6 atoms for

global optimization

NELECT = 256, perfect structure

NELECT = 254, O atoms tends to be closer

IM²0DE能够只对块体中指定的部分原子做全局优化

体系5:搜索界面的测试案例 program chart

体系6: 搜索界面的测试案例

System: CdSe

Substrate:

Cd: 36; Se: 36

Grain boundary:

Cd: 2, Se: 2

2 Cd atom and 2 Se atoms for global optimization

Stable and meta-stable structures could be found in 3 generations

IM²0DE能够在种群数是30的情况下,平均3代把能量最低的结构搜索出来

体系4: 搜索界面的测试案例 Interface of STO-Si

0 eV

-0.272 eV

-0.478 eV

IM²0DE能够搜索到比传统的Si-Sr0面能量更低的结构

5已取得成果

RAPID COMMUNICATIO

CrossMark

PHYSICAL REVIEW B 92, 201413(R) (2015)

Structural evolution and optoelectronic applications of multilayer silicene

Zhi-Xin Guo,^{1,*} Yue-Yu Zhang,² Hongjun Xiang,² Xin-Gao Gong,² and Atsushi Oshiyama³ Hybrid crystalline sp^2 — sp^3 carbon as a high-efficiency solar cell absorber

Yue-Yu Zhang ^{a, b}, Shiyou Chen ^c, Hongjun Xiang ^{a, b}, Xin-Gao Gong ^{a, b, *}

NANO LETTERS pubs.acs.org/NanoLett

Two-Dimensional SiS Layers with Promising Electronic andding.
stoo
too
too
tooJi-Hui Yang,**^{†,II} Yueyu Zhang,**Wan-Jian Yin,*X
actor this structural read
sorption, and the simula
materials such as GaAs,
application as light-abso自2015年面世以来,IM20DE成功预言的
材料已发表SCI论文7篇,包括功能性块
体材料、二维材料、团簇等。

Global Optimization

We believe that the number of functional meta-stable compounds which human beings can synthesis is infinity. And IM²ODE offers some way to search for useful meta-stable states for further studying.

- •我们开发了一款**逆向材料设计的软件包IM²0DE**, 可以根据所需的性质来设计材料.
- IMODE采用多目标全局优化算法,具有很好的普适性.
- 我们给出了在不同体系中的应用案例,来说明
 IMODE的普适和高效.

Thank you!

Inverse Design of Materials

IM²ODE

Inverse Design of Materials by Multi-Objective Differential Evolution

Zhang, Y.-Y.; Gao, W.; Chen, S.; Xiang, H.; Gong, X.-G. Comput. Mater. Sci. 2015, 98, 51.

Flow Chart of IM²ODE

Multi-Objective Differential Evolution

Mutation Operation (dominated) Differential Perturbation vector vector p_{best} p_a p_i p_b p'_i $p'_{i} = \gamma p_{best} + (1 - \gamma)p_{i} + F(p_{a} - p_{b})$

Mutation Operation (non-dominated)

Capability of IM²ODE

Find Materials with Large Bulk Modulus

- Tested system: C₃N₄
- objective functions:

min
$$z_1$$
 = total energy
min z_2 = - B = $-\frac{N_c}{4}\frac{0.624 - 0.070I}{d^{3.5}}$

	Total Energy / atom (eV		
	/ atom)	B(empirical equ)(GPa)	B(ab initio)(GPa)
Defect zinc-blende	0.0	440.557	414.718
cubic	-0.022	454.546	462.48
1	-0.164	448.134	30.859
2	-0.055	463.917	140.35

YY Zhang, W Gao, S Chen, H Xiang, XG Gong, *Comp. Mat. Sci*, 2015, 98 (51)

Find Materials with Desired Band Gap

- design material $\min z_1 = \text{total energy}$ with a target direct $\min z_2 = |E_g - \text{direct gap}| + |\text{direct gap} - \text{indirect gap}|$ band gap E_g

System	E _g (eV)	Average generation
α -Al ₂ O ₃	6.4	2
Diamond (Carbon)	4.1	3
Graphite (Carbon)	0.0	3

 design material with a target direct band gap Eg

Motivation to Design TiO₂ with better Optical property

Titanium Oxide (TiO₂):

great potential in PEC water splitting

✓ low cost, nontoxic ...

 \checkmark strong catalytic activity, high chemical stability

Large intrinsic band, absorbs only UV

A dopant-free TiO₂ phase with a suitable band gap is highly desirable.

Predicting New TiO₂ Phases with Low Band Gaps

HZ Chen, YY Zhang, X Gong, H Xiang, J. Phys. Chem. C, 2014, 118 (5)

Carbon: a Versatile Element

Hybrid Crystalline *sp²-sp³* Carbon Allotropes

High efficiency solar cell absorber

Optical dipole transition between the π and π^* states is allowed

Large light absorption coefficients and high efficiencies

5

The lowest energy structures of SiS systems

Yang, J.-H.; Zhang, Y.-Y; Yin, W.-J.; Gong, X.-G. Yakobson, B. I.; Wei. S.-H. Nano Lett, 2016, 16 (2)

NANO-LETTERS

PHYSICAL REVIEW B 92, 201413(R) (2015)

Structural evolution and optoelectronic applications of multilayer silicene

Zhi-Xin Guo,^{1,*} Yue-Yu Zhang,² Hongjun Xiang,² Xin-Gao Gong,² and Atsushi Oshiyama³ Hybrid crystalline $sp^2 - sp^3$ carbon as a high-efficiency solar cell absorber

Yue-Yu Zhang ^{a, b}, Shiyou Chen ^c, Hongjun Xiang ^{a, b}, Xin-Gao Gong ^{a, b, *}

ding. Two-Dimensional SiS Layers with Promising Electronic and r too irbon Optoelectronic Properties: Theore Ji-Hui Yang,*,^{†,||} Yueyu Zhang,^{‡,§} Wan-Jian Yin,[†] X. 自2015年面世以来, IM²0DE成功预言的 arcu uns su ucunar icau multi-objective inverse b 材料已发表SCI论文7篇,包括功能性块 sorption, and the simula materials such as GaAs, v 体材料、二维材料、团簇等。

application as light-abso

Letter pubs.acs.org/NanoLett

RAPID COMMUNICATIO

Future Works

Global Optimization

We believe that the number of functional meta-stable compounds which human beings can synthesis is infinity. And IM²ODE offers some way to search for useful meta-stable states for further studying.

Conclusion

- We developed a powerful tool, IM²ODE, to search for materials with desired properties.
- Five carbon allotropes are found to be good solar cell absorbers.
- The predicted SiS systems have both good optical property and high carrier mobility.

Thank you!