AEM:通过氯化锂溶后处理制备浅受体型缺陷Cu2ZnSn(S,Se)4太阳能电池


第一作者:Mingrui He, Xian Zhang, Jialiang Huang

通讯作者:Xiaojing Hao, Jinhyeok Kim, Shiyou Chen, Jianjun Li

合作单位:新南威尔士大学,韩国全南国立大学,华东师范大学,悉尼大学,韩国光州科学技术院

背景介绍

铜锌锡硫硒(CZTSSe)材料由于其低廉的价格,近年来成为薄膜太阳电池研究的热点。然而,在合成CZTSSe过程中伴随着大量晶体缺陷的产生,进而降低了电池的光电转化效率。因此,如何有效调控缺陷是该领域的重要问题。

文章简介

近日,新南威尔士大学Xiaojing Hao团队,韩国全南国立大学Jinhyeok Kim团队和华东师范大学Shiyou Chen团队通过使用氯化锂溶后处理CZTSSe吸收层,实现了更浅的受体型缺陷(LiZn),提高了P型掺杂,将CZTSSe太阳能电池效率提高至10.7%。本文通过纳米尺度的化学分析(atom probe tomography),电学表征分析(admittance spectra)和密度泛函理论(DFT)阐明了Li在CZTSSe掺杂机制。研究表明,通过该方法可实现Li在CZTSSe晶界和晶体内部的均匀掺杂,并实现10%以上的掺杂效率。0.006% 的Li元素掺杂量就能引入1017 cm-3的LiZn浅受主缺陷,从而显著改变CZTSSe材料的P-型导电机制和太阳电池器件性能。该成果以题为“High Efficiency Cu2ZnSn(S,Se)4 Solar Cells with Shallow LiZn Acceptor Defects Enabled by Solution-Based Li Post-Deposition Treatment”发表在了Adv. Eng. Mater.上。

图文导读

图一 Li后处理方法

a)-d)LiCl溶液工艺示意图及Li后处理方法

e)未处理的CZTSSe吸收层

f)Li掺杂的CZTSSe吸收层

图二 Li在电池器件的分布

a) CZTSSe和b)锂掺杂的CZTSSe太阳能电池的元素分布

Li在CZTSSe太阳能电池中的3D分布图

图三 电池器件光伏性能

a)电池器件的J-V曲线

b)电池器件的EQE曲线

c)电池器件的带隙

d)电池器件的Drive level capacity profiling

e)电池器件的Suns-Voc

f)电池器件的Time-resolved photoluminescence

图四 缺陷表征

a)-b)电池器件的Admittance spectra

c)电池器件的Arrhenius plots

d)电池器件的缺陷态密度

图五 理论计算

a)不同Li相关缺陷的形成能

b)不同Li相关缺陷在带隙的位置

c)LiZn 缺陷在晶格的位置

文献链接:High Efficiency Cu2ZnSn(S,Se)4 Solar Cells with Shallow LiZn Acceptor Defects Enabled by Solution‐Based Li Post‐Deposition Treatment. Adv. Energy Mater. 2021, 2003783. https://doi.org/10.1002/aenm.202003783

团队在该领域的相关文献推荐

1. Li, J., Huang, Y., Huang, J., Liang, G., Zhang, Y., Rey, G., ... & Green, M. A. (2020). Defect Control for 12.5% Efficiency Cu2ZnSnSe4 Kesterite Thin‐Film Solar Cells by Engineering of Local Chemical Environment. Advanced Materials, 32(52), 2005268.

2. Liu, F., Zeng, Q., Li, J., Hao, X., Ho-Baillie, A., Tang, J., & Green, M. A. (2020). Emerging inorganic compound thin film photovoltaic materials: Progress, challenges and strategies. Materials Today.

3. Tang, R., Wang, X., Lian, W., Huang, J., Wei, Q., Huang, M., ... & Chen, T. (2020). Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency. Nature Energy, 5(8), 587-595.

4. Zeng, Q., Lai, Y., Jiang, L., Liu, F., Hao, X., Wang, L., & Green, M. A. (2020). Integrated Photorechargeable Energy Storage System: Next‐Generation Power Source Driving the Future. Advanced Energy Materials, 10(14), 1903930.

5. Deng, H., Zeng, Y., Ishaq, M., Yuan, S., Zhang, H., Yang, X., ... & Tang, J. (2019). Quasiepitaxy strategy for efficient full‐inorganic Sb2S3 solar cells. Advanced Functional Materials, 29(31), 1901720.

6. Cui, X., Sun, K., Huang, J., Yun, J. S., Lee, C. Y., Yan, C., ... & Hao, X. (2019). Cd-Free Cu 2 ZnSnS 4 solar cell with an efficiency greater than 10% enabled by Al 2 O 3 passivation layers. Energy & Environmental Science, 12(9), 2751-2764.

7. Liu, X., Zhang, Y., Shi, L., Liu, Z., Huang, J., Yun, J. S., ... & Hao, X. (2018). Exploring Inorganic Binary Alkaline Halide to Passivate Defects in Low‐Temperature‐Processed Planar‐Structure Hybrid Perovskite Solar Cells. Advanced Energy Materials, 8(20), 1800138.

8. Yan, C., Huang, J., Sun, K., Johnston, S., Zhang, Y., Sun, H., ... & Hao, X. (2018). Cu 2 ZnSnS 4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nature Energy, 3(9), 764-772.

9. Park, J., Huang, J., Yun, J., Liu, F., Ouyang, Z., Sun, H., ... & Hao, X. (2018). The Role of Hydrogen from ALD‐Al2O3 in Kesterite Cu2ZnSnS4 Solar Cells: Grain Surface Passivation. Advanced Energy Materials, 8(23), 1701940.

10. Gu, Y., Shen, H., Ye, C., Dai, X., Cui, Q., Li, J., ... & Lin, H. (2018). All‐Solution‐Processed Cu2ZnSnS4 Solar Cells with Self‐Depleted Na2S Back Contact Modification Layer. Advanced Functional Materials, 28(14), 1703369.

11. Liu, F., Yan, C., Huang, J., Sun, K., Zhou, F., Stride, J. A., ... & Hao, X. (2016). Nanoscale microstructure and chemistry of Cu2ZnSnS4/CdS interface in kesterite Cu2ZnSnS4 solar cells. Advanced Energy Materials, 6(15), 1600706.

12. Sun, K., Yan, C., Liu, F., Huang, J., Zhou, F., Stride, J. A., ... & Hao, X. (2016). Over 9% efficient kesterite Cu2ZnSnS4 solar cell fabricated by using Zn1–xCdxS buffer layer. Advanced Energy Materials, 6(12), 1600046.

本文由作者投稿。

分享到