【引言】 便携式电子设备和电动汽车的迅速发展促使人们不断追求能量密度更高的可充电锂离子电池。其中,使用理论能量密度最高(3860 mAh g-1)和电极电位最...
【引言】 全球能源危机和环境恶化促使绿色能源技术的发展,使人们对包括锂离子电池在内的能源储存系统给予了相当大的关注,尤其是对高能量密度储能方式。为了实现这一目标...
【引言】 锂金属负极由于具有超高的比容量(3860 mAh g–1),较低的氧化还原电位(-3.04 V vs标准氢电极)和较低的重量密度(0....
【引言】 锂离子电池(LIB)在运行过程中,应该保持电化学惰性。然而,由于电极在极端的电压下工作,电解液的热力学稳定性受到限制,只能够通过动力学保护来建立稳定性...
【引言】 目前,商业化的锂离子电池(LIBs)大多使用过渡金属氧化物(包括LiCoO2,LiNixMnyCozO2,和LiFePO4等)作为正极材料,石墨/硅复...
【引言】 改善活性材料以及电极中的电子和离子传输是提高锂离子电池(LIB)电极的重要研究途径。本文研究了作为LIB的阳极材料的硅化铁材料,因为与纯Si颗粒相比,...
【引言】 目前商业化的锂离子电池的能量密度低于300 Wh kg-1和750 Wh L-1,急需进一步的提升。位于同一主族的硫和硒由于具有极高的理论比容量和低成...
【引言】 在可充电的储能设备中,锂离子电池技术处于学术和工业界的前沿,但是对更高能量密度的不断增长的需求给其发展带来了巨大压力。Li-O2电池技术由于使用与氧气...
【引言】 近年来,对于高能量密度电池的不断追求使得锂(Li)金属负极(LMA)再次成为了研究热点。然而,由于LMA稳定性面临着许多问题限制了其大规模应用。锂金属...
【引言】 金属锂由于其自身较高的比容量(3860 mAh/g)和极低的电极电势(−3.040 V vs.标准氢电极电势),被认为是下一代高能量密度电池电极材料中...
【引言】 锂-硫(Li-S)电池因其高理论能量密度和低成本优势,被认为是电化学储能领域的重要发展方向,但锂硫Li-S电池的实际应用仍受到其正极和负极诸多缺点的限...
【引言】 锂离子电池已经成为了最普遍使用的储能装置。为了追求更极致的性能,采用金属锂负极已成大势所趋,然而金属锂的沉积和剥离期间形成的Li枝晶会刺穿隔膜,导致电...
【引言】 锂金属由于具有极高的理论比容量和最低的电极电势被认为是最有前景的负极材料。然而,Li金属负极的实际应用仍面临着一些挑战,主要包括Li枝晶的不断生长,不...
【引言】 使用固体电解质和锂(Li)金属负极的固态Li金属电池由于其高能量密度和安全性而广受欢迎,有望为电动汽车和智能电网提供新兴的能量存储系统。然而,固态锂电...
【引言】 锂金属由于具有极高的比容量,低密度和最低的化学势等优点,被认为是最有前景的锂离子电池负极材料。然而,采用传统液态电解质的锂金属电池,由于锂枝晶的形成和...
【引言】 可充电锂金属电池由于高理论能量密度而引起广泛关注。对于实际应用,由于复杂的应用环境,在安全性和循环寿命方面,锂电池能在高温下稳定运行是负极为金属锂或包...
【引言】 用于商业化锂离子电池(LIB)的电解液通常采用的是具有高凝固点的溶剂(例如,碳酸亚乙酯,35~38℃;碳酸二甲酯,2~4℃),这限制了锂离子电池在低温...