潘曹峰Nano Energy:WS2/CsPbBr3范德华异质结平面光电探测器具有超高开关比和压电光电子学效应诱导的应变门控特性


潘曹峰Nano Energy:WS2/CsPbBr3范德华异质结平面光电探测器:具有超高开关比和压电光电子学效应诱导的应变门控特性

【引言】

  二维(2D)材料作为一种具有巨大潜力的新型材料,由于其超薄的厚度、可调的带隙和高迁移率,在电子和光电领域得到了广泛的研究。层间范德华力(vdW)和原子平面界面有助于二维材料摆脱异质结构中晶格匹配的限制。由于二维材料与各种尺寸材料结合的可能性很大,因此可以制造出最先进的光电异质结构。受这些的启发,具有显著光电性能的卤化物钙钛矿被用于同二维材料组装异质结构。在钙钛矿和二维材料之间有效和超快的电荷载流子转移已被广泛证明,并已被证明能显著改善平面光电探测器的性能。然而,在不调制栅极电压的情况下,平面二维材料/钙钛矿光电探测器的暗电流很大,开关比低,待机功率大,严重制约了二维材料/钙钛矿光电探测器的应用。

  之前研究者报道的关于二维材料/钙钛矿光电探测器往往使用了通过化学气相沉积或溶液法合成的二维材料。机械剥离更容易获得纯度和清洁度更高的二维薄片,机械剥离的二维薄片晶体质量好、缺陷少、迁移率高,制备的光电探测器具有更高的性能和更低的能量损耗。此外,之前报道的异质结构绝大多数使用有机-无机杂化卤化物-钙钛矿,这类钙钛矿不稳定的特性严重限制了器件的制备。并且这类器件通常使用多晶、量子点和多单晶等取向无序的钙钛矿,因此通过卤化物钙钛矿的压电特性来实现压电电子学效应或压电光电子学效应是一个挑战。全无机钙钛矿单晶(CsPbBr3)具有稳定性好,无晶界,缺陷态密度低,载流子扩散时间长等有点,用于构建高性能器件具有巨大的潜力。近年来,人们已经报道了CsPbBr3的压电性能,但尚未报道CsPbBr3引起的压电效应或压电光电效应。压电电子学效应和压电光电子学效应使传统器件不仅具有更好的性能,而且还具有多功能集成,对可穿戴电子器件、人机界面、物联网等都至关重要。考虑到机械剥离的二维薄片和全无机卤化物钙钛矿单晶的优良性能,利用这两种结构块可以潜在地实现一种高性能、低功耗、多功能集成的vdWH光电探测器。

【成果简介】

  近日,中国科学院北京纳米能源与纳米系统研究所潘曹峰研究员在高性能的二维材料/钙钛矿光电探测器领域取得突破性进展,以题为“WS2/CsPbBr3 van der Waals heterostructure planar photodetectors with ultrahigh on/off ratio and piezo-phototronic effect-induced strain-gated characteristics”发表在Nano Energy上。该工作首次采用机械剥离的2D-WS2纳米片和单晶1D- CsPbBr3纳米线构建了WS2/ CsPbBr3-vdWH平面光电探测器。该探测器的开关比高达109.83,响应度和探测率分别达到57.2 A/W和1.36×1014琼斯。获得高性能的同时,该器件的极低的暗电流和低的工作电压可以有效地降低功耗。此外,研究者还基于柔性衬底实现了可通过压电光电子学效应调制的,同时具有多功能集成特性的WS2/ CsPbBr3-vdWH光电探测器。

【图文简介】

1 WS2/CsPbBr3-vdWS组装工艺及器件结构

(a) 器件构建步骤示意图;

(b-c) 所选的用于制造vdWH的2D WS2薄片和1D CsPbBr3纳米线的光学显微照片;

(d) 组装好的WS2/CsPbBr3-vdWH的光学显微照片(表面覆盖有用于电子束曝光的PMMA);

(e-f) WS2/CsPbBr3-vdWH平面光电探测器的光学显微照片和假彩色扫描电镜图像。需要说明的是,本工作报道的器件结构是以WS2为单一导电沟道的平面结构,因而与CsPbBr3纳米线交叉的金属触点在这项工作中是没有用处的。图中的所有刻度条均为5微米。

2 WS2的光谱图和能带结构

(a) CsPbBr3和WS2/ CsPbBr3的PL谱,异质结处的PL明显减弱,展示了光生载流子的输运;

(b) WS2/ CsPbBr3的PL谱图的mapping;

(c) CsPbBr3和WS2/ CsPbBr3的TRPL谱;

(d) WS2/ CsPbBr3的能带结构;

(e-f) CsPbBr3 ,WS2和WS2/ CsPbBr3的拉曼光谱;

(g-h) 纯WS2器件的结构示意图和能带图;

(i-j) WS2/ CsPbBr3的器件结构图和能带图,展示出耗尽区的形成。

3 器件性能

(a) 两种器件的I-V曲线;

(b-e) 器件的光电流密度和开关比的数据统计,其中d图给出了光电流密度统计中所用每个数据的具体数值及其分布,而e图是开关比统计中所用每个数据的具体数值及其分布;

(f) 不同光强下的I-V曲线;

(g) 不同光强下的光电流;

(h) 不同光强下的响应度和EQE曲线;

(i) 不同光强下的开关比和比探测率;

(j) 瞬态响应曲线;

(k) 器件的响应时间。

 

4 压电光电效应引起的WS2/CsPbBr3-vdWS器件的应变门控特性

(a) 相同光强,不同应变力下的I-V曲线;

(b-c) 不同应变力下对应的光电流和响应度。光电流随应变的变化而发生明显的变化,因而为探测器件或者芯片自身所受到的应变提供了潜在的应用价值;

(d) 所测试的异质结的光学显微图片,标尺为10微米;

(e) CsPbBr3纳米线的HR-TEM图;

(f-g) 器件压缩应变示意图及其对应的能带图,图中红色和蓝色分别代表正电势和负电势;

(h-j) 器件拉伸应变示意图及其对应的能带图。

【小结】

研究者设计了一种新型的WS2/ CsPbBr3-vdWH光电探测器,它具有高性能、低能耗、多功能集成等特点。器件开关比高达109.83,响应度和探测率分别达到57.2 A/W和1.36×1014琼斯。此外,研究者还基于柔性衬底制备了可通过压电光电子学效应调制并且能够探测器件本身所受应变的多功能集成的光电探测器。

文献链接:WS2/CsPbBr3 van der Waals heterostructure planar photodetectors with ultrahigh on/off ratio and piezo-phototronic effect-induced strain-gated characteristics. 2019, Nano Energy, DOI: 10.1016/j.nanoen.2019.104001.

附注:

作者信息:

通讯作者: 潘曹峰

第一作者: 徐迁

第一通讯单位: 北京纳米能源与系统研究所

 

课题组简介:

潘曹峰,研究员,博士生导师,先后入选国家特聘专家青年项目、自然基金委“优秀青年基金”,北京市海聚工程及特聘专家。

2005、2010年分别在清华大学材料科学与工程系获学士、博士学位,2011与2012年先后获得北京市优秀博士学位论文奖以及全国优秀博士学位论文奖。其后于美国佐治亚理工学院材料科学与工程学院进行博士后研究。主要从事低维压电半导体光电器件的压电(光)电子学效应(压电半导体中的力光电耦合效应)及微纳光电功能器件研究。在Nat. Photon.Chem. Rev. Nat. Comm.Adv. Mater.Adv. Energy Mater.Angew. Chem. Int. Edit.Nano EnergyACS Nano 等期刊上发表SCI论文160余篇,引用6700多次。现任Science Bulletin期刊材料学副主编与Nanotechnology的光电section editor。

 

研究领域:

压电电子学与压电光电子学实验室主要从事低维压电半导体微纳光电功能器件中的力光电耦合效应(压电电子学效应)及相关应用研究。以构建高性能微纳光电功能器件为目标,以低维压电半导体为载体,从材料的设计和可控制备出发,探索压电(光)电子学效应对压电半导体光电器件性能的调制机制,研究了从单根纳米线原型器件到由大规模纳米线阵列构成的集成器件,在超高分辨率应力传感及成像、高性能传感器阵列等研究方面取得了重要进展。

   目前,实验室主要开展以下三方面研究:

  1. 三代半导体纳米器件中的压电(光)电子学效应
  2. 新型微纳光电器件
  3. 触感电子学与智能机器人

 

课题组近两年在该领域发表的主要论文汇总:

  1. Piezotronics and piezo-phototronics of third generation semiconductor nanowires, Chemical Reviews, 2019, 119, 9303.
  2. Piezo-Phototronic Effect Enhanced Efficient Flexible Perovskite Solar Cells, ACS Nano, 2019, 134, 4507.
  3. Controllable Growth of Aligned Monocrystalline CsPbBr3 Microwire Arrays for Piezoelectric-induced Dynamic Modulation of Single-Mode-Lasing, Advanced Materials, 2019, 31, 1900647.
  4. Dynamically Modulated GaN Whispering Gallery Lasing Mode for Strain Sensor, Advanced Functional Materials, 2019,
  5. Controlled fabrication, lasing behavior and excitonic recombination dynamics in single crystal CH3NH3PbBr3 perovskite cuboids, Science Bulletin, 2019, 64, 698.
  6. Achieving High-resolution Pressure Mapping via Flexible GaN/ZnO Nanowire LEDs Array by Piezo-phototronic Effect, Nano Energy, 2019, 58, 633.
  7. Piezophotonic Effect Based on Mechanoluminescent Materials for Advanced Flexible Optoelectronic Applications”, Nano Energy, NGPT special issue, 2019, 55, 389.
  8. Unveiling the interlayer electron transport and its influence on the whole electric properties of black phosphorus, Science Bulletin, 2019, 64, 254.
  9. Dynamic Regulating of Single-Mode-Lasingin ZnO Microcavity by Piezoelectric Effect, Materials Today, 2018, 24, 33.
  10. Flexible Photodetector Arrays Based on Patterned CH3NH3PbI3-xClx Perovskite Film for Real-time Photosensing and Imaging, Advanced Materials, 2018, 30, 1805913.
  11. Recent progress in flexible pressure sensors arrays: from design to applications, Journal of Materials Chemistry C, 2018, 6, 11878.
  12. ZnO nanowire based CIGS solar cell and its efficiency enhancement by the piezo-phototronic effect, Nano Energy, 2018, 49, 508.
  13. In2O3 Nanowires Field-Effect Transistors with Sub-60 mV/dec Subthreshold Swing Stemming from Negative Capacitance and their Logic Applications, ACS Nano, 2018, 12, 9608.
  14. Progress in piezotronic and piezo-phototronic effect of two-dimensional materials, 2D Mater, 2018, 5, 042003.
  15. Large and Ultra-Stable All-Inorganic CsPbBr3 Monocrystalline Films: Low-Temperature Growth and Application for High-Performance Photodetectors, Advanced Materials, 2018, 30, 1802110.
  16. Piezotronic Effect Tuning on ZnO Microwire WGM Lasing Mode, ACS Nano, 2018, 12, 11899.
  17. Piezophototronic effect enhanced photoresponse of the flexible CIGS heterojunction photodetectors, Advnced Functional Materials, 2018, 28, 1707311.
  18. Piezo-phototronic Effect Modulated Deep UV Photodetector Based on ZnO-Ga2O3 Heterojuction Microwire, Advanced Function Materials, 2018, 28, 1706379.

 

课题组相关领域论文推荐:

压电(光)电子学:

  1. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array, Nature Photonics, 2013, 7, 752-758
  2. Enhanced Emission Intensity of Vertical Aligned Flexible ZnO Nanowire/p-Polymer Hybridized LED Array by Piezo-phototronic Effect, Nano Energy, 2015, 14, 364-371.
  3. Enhancing Light Emission of ZnO-Nanofilm/Si-Micropillar Heterostructure Arrays by Piezo-Phototronic Effect, Mater. 2015, 27, 4447.
  4. Piezo-phototronic enhanced UV sensing based on a nanowire photodetector array, Mater. 2015, 27, 7963
  5. Enhancing Photoresponsivity of Self-Aligned MoS2 Field-Effect Transistor by Piezo-Phototronic Effect from GaN Nanowire, ACS Nano, 2016, 10, 7451.
  6. Enhanced performances of flexible ZnO/perovskite solar cells by piezo-phototronics effect, Nano Energy, 2016, 23, 27.
  7. Flexible LED Arrays Made of Transferred Si-Microwires-ZnO-Nanofilm with Piezo-Phototronic Effect Enhanced Lighting, ACS Nano, 2017, 11, 3883.
  8. Piezo-phototronic Effect Modulated Deep UV Photodetector Based on ZnO-Ga2O3 Heterojuction Microwire, Advanced Function Materials, 2018, 28, 1706379.
  9. Achieving High-resolution Pressure Mapping via Flexible GaN/ZnO Nanowire LEDs Array by Piezo-phototronic Effect, Nano Energy, 2019, 58, 633.

新型微纳器件:

  1. MoS2 Negative Capacitance Field Effect Transistors with Subthreshold Swing below the Physics Limit, Advanced Materials, 2018, 30, 1800932.
  2. In2O3 Nanowires Field-Effect Transistors with Sub-60 mV/dec Subthreshold Swing Stemming from Negative Capacitance and their Logic Applications, ACS Nano, 2018, 12, 9608.
  3. Piezotronic Effect Tuning on ZnO Microwire WGM Lasing Mode, ACS Nano, 2018, 12, 11899.
  4. Tunable tribotronic dualgate logic device based on MoS2 and black phosphorus transistors, Advanced Materials, 2018, 30, 1705088.
  5. Flexible Photodetector Arrays Based on Patterned CH3NH3PbI3-xClx Perovskite Film for Real-time Photosensing and Imaging, Advanced Materials, 2018, 30, 1805913.
  6. Dynamic Regulating of Single-Mode-Lasingin ZnO Microcavity by Piezoelectric Effect, Materials Today, 2018, 24, 33.

传感与触感电子学:

  1. Dynamic Triboelectrification-Induced Electroluminescence and its Use in Visualized Sensing, Mater. 2016, 28, 6656.
  2. Self-powered High-resolution and Pressure-sensitive Triboelectric Sensor Matrix for Real-time Tactile Mapping, Mater., 2016, 28, 2896.
  3. Full Dynamic-Range Pressure Sensor Matrix Based on Optical and Electrical Dual-Mode Sensing, Mater., 2017, 29, 1605817.
  4. Detection of Non-joint Areas Tiny Strain and Anti-Interference Voice Recognition by Micro-cracked Metal Thin Film, Nano Energy, 2017, 34, 578.
  5. Highly Stretchable Transparent Selfpowered Triboelectric Tactile Sensor with Metallized Nanofibers for Wearable Electronics, Advanced Materials, 2018, 30.
  6. Skin inspired Highly Stretchable and Conformable Matrix Networks for Multifunctional Sensing, Nature Communications, 2018, 9, 244.
分享到