【科学背景】 超导现象是物理学中的一个重要领域,其中手性超导体因其独特的物理性质备受关注。手性超导体是一种非常规超导态,能够自发地打破时间反演对称...
加州理工Science,新型建筑材料,层间链接的拓扑材料 【科学背景】 传统的建筑化材料大多依赖于内部结构元素的几何排列来获取其独特的力学性能。这些材料通常由周...
北京大学Nature Synthesis,有序相亚纳米材料,超高催化性能! 【科学背景】 在追求先进阴离子交换膜燃料电池(AEMFCs)的性能提升过程中,解决阳...
哈佛大学最新Science,双向变形的可编程液晶弹性体! 【科学背景】 小分子液晶(LC)是一种能够自我排列形成有序相的特殊化合物,它们展现出各向异性的特性。例...
斯坦福大学Nat Mat,软物质光学超表面,让光转个弯! 一、【科学背景】 软材料因其与生物系统的兼容性、灵活性和对刺激的响应性而在这些领域显示出巨大潜力。为了...
【科学背景】 在医药化学和材料科学中,将氘(Deuterium,D)整合到有机分子中有着广泛的应用。氘代药物,如Austedo、Donafenib和Sotykt...
一、【科学背景】 金属有机框架(MOF)是一类新兴的多孔晶体材料,因具有超高比表面积、可灵活设计的化学组成、易于调控的孔道结构,MOF材料在许多领域展现了出色的...
一、【科学背景】 二维(2D)钙钛矿可以在溶液中合成,形成一维氢键有机网络。这些纳米线具有可定制的长度和高质量的空腔,为研究层状钙钛矿中的各向异性激子行为、光传...
一、【科学背景】 在过去十年间,新型天然自由基生物催化剂可以优先作用于特异立体异构体,获得了快速发展。其中天然光酶家族体系受到广泛关注,但需要稳定的光输入才能进...
一、【科学背景】 金属材料的强度与韧性之间的平衡是至关重要的,特别是在极端环境下,尤其是在高温环境中表现尤为突出。在过去的半个世纪里,随着全球对减少碳排放的迫切...
一、【科学背景】 锂(Li)金属电池具有高能量密度,外界压力下导致的体积变化和电池膨胀会带来安全性挑战。但在大尺寸软包电池中,外部压力与锂离子电镀行为之间的相互...
一、【科学背景】 微纳尺度颗粒广泛应用于生物医学、药物输送、微电子和微流体等领域,但大规模定制生产此类颗粒极富挑战。传统的微纳尺度颗粒制造分为自下而上和自上而下...
一、【科学背景】 液态沉积的0D纳米颗粒、1D纳米线和2D纳米片在电子设备、传感器、催化剂和能源存储领域表现出极大潜力。尤其是2D纳米片,因其电子...
大自然里的骨骼、贝壳和昆虫外骨骼都通过一个称为“矿物化”的自然过程变得坚固。这个过程涉及矿物质的沉积,使得这些生物结构不仅坚硬,还能适应环境压力。科学家们正从这...
一、【导读】 通过电化学方法将CO2还原为增值多碳化学品或燃料是缓解能源危机和实现碳中和的最有前途的策略之一。然而,由于碳-碳(C-C)偶联催化剂上的活性位点有...
一、【导读】 全钙钛矿串联太阳能电池(TSC)具有很好的应用前景,有望突破单结太阳能电池的效率极限。然而,作为全钙钛矿串联电池的重要组成部分,宽带隙钙钛矿子电池...
一、【导读】 金属卤化物钙钛矿作为一种极具前景的新型光伏材料,有望用于构建更薄、更轻、更柔性、低成本的高效太阳能电池。单结钙钛矿太阳能电池的效率(PCE)在短短...